SILICON LABS

AN191

MOTOR CONTROL SOFTWARE EXAMPLES

1. Introduction

Small motors, less than 300 W, are found in a wide
variety of applications. These include automobiles,
printers, copiers, paper handlers, factory automation,
test equipment, robotics, space & military, and many
others. The most popular small motors types are DC,
Brushless DC, and Stepper motors. The quantity of
motors produced is roughly inversely proportional to the
power level. Small motors are produced in much higher
guantities than larger motors.

Motor-control-specific DSPs are designed primarily to
address the requirements of large off-line motors. Off-
line motors are typically AC induction or Brushless DC
motors operating from 110 to 480 VAC and ranging
from 1/4 to 100 HP. Motor-control-specific DSPs are
often too costly for small motors control systems.

The C8051F3xx series of small form-factor
microcontrollers is well suited for the control of small
motors. These microcontrollers have several features
that are very useful in motor control systems. In addition
to the standard 8051 timers, the C8051F3xx series also
features a programmable counter array (PCA). The
PCA has several operating modes. The 8-bit PWM
mode is ideally suited for most small motor control
applications. The high-speed output mode can be used
to generate multiple center-aligned PWM signals with
dead-time. The digital crossbar on the C8051F3xx
family can be used to select which port pin receives the
PWM signal. The crossbar can also be used to
eliminate the need for an external multiplexer.

The ADC of the C8051F3xx MCUs can be used to
measure the motor current, supply voltage, back-emf,
and temperature of the motor. The analog multiplexer
and differential measurement capability are very useful
in measuring bidirectional motor currents and
differential phase voltages. The differential mode and
the programmable window detector are used in
"Example 3—DC Motor with Soft Reversing," on page 6.
The ADC is used to measure the position of a speed
control potentiometer in most of the software examples.
The standard 8051 timers TO and T1 provide a useful
second time-base in addition to the PCA. The TO and
T1 timers can be used to control commutation or update
rate while the PCA is used for PWM.

The analog comparators can be used to measure zero
crossing, over-current, over-voltage, or over-

temperature. These types of measurements and
protection features are prevalent in motor drive
systems.

The C8051F3xx family of microcontrollers feature a two-
wire C2 interface that permits Flash programming and
debugging. The On-Chip debug circuitry facilitates full
speed, non-intrusive in-system debugging. When the
MCU hits a breakpoint, the pins are effectively frozen in
time. While this behavior is generally desirable, it can
leave the PWM outputs in the active state. The
suggested debug procedure is to always disconnect the
motor leads when single stepping code or using
breakpoints.

The purpose of this application note is to provide
software examples using the ‘F3xx MCUs to control
various types of motors. All examples are relatively
simple, but demonstrate effective solutions for the
various motor types. A typical motor control system
requires additional features and higher complexity.
These software examples may be used as a starting
point for the development of more complex motor drive
systems.

The code listings for the software examples are found in
the appendices starting on page 17. The source code
may also be downloaded from the Silicon Laboratories
web site www.silabs.com.

The code accompanying this application note was
originally written for C8051F30x devices. The code can
also be ported to other devices in the Silicon Labs
microcontroller range.

Rev. 1.1 7/13

Copyright © 2013 by Silicon Laboratories

AN191

http://www.silabs.com

AN191

2. Example 1—DC Motor

DC motors are the most common and least expensive
of all the small motors. There are several varieties of
DC motors. In this application note the term “DC Motor”
refers more specifically to a brush-commutated
permanent-magnet DC motor. DC motors are used in a
wide range of applications in the automotive, consumer
and industrial market segments. Brushless DC (BLDC)
motors promise improved reliability, reduced noise, and
potentially lower cost. However, BLDC motors have only
supplanted conventional DC motors in a few specialized
high volume applications—disk drives and computer
fans.

The characteristics of a DC motor make it the easiest
motor to use in a variable-speed system. The torque
speed characteristics of a DC motor are shown in
Figure 1. The no-load speed of a DC motor is
proportional to the voltage applied across the motor.
The voltage-speed characteristics of a DC motor driving
a constant-torque load, linear-load or exponential-load
are also continuous, positive-slope, and predictable.
Thus, in most cases it is feasible to use open-loop
control. By simply varying the voltage across the motor,
one can control the speed of the motor. Pulse width
modulation (PWM) can be used to vary the voltage
applied to the motor. The average voltage applied to the
motor is proportional to the PWM duty cycle (ignoring
the second order effects of the motor inductance and
discontinuous operation).

Torque

Speed
Figure 1. DC Motor Characteristics

Example 1 provides simple speed control of a DC motor
using the ‘F300. This example reads the position of a
potentiometer using the ADC on P0.6 and outputs a
corresponding PWM signal using the PCA 8-bit PWM
mode on P0.0. The hardware configuration for software
Example 1 is illustrated in Figure 2. A single N-channel
Power MOSFET Q1 is used to drive the DC motor. The
Power MOSFET should be chosen for the particular
motor voltage and current requirements. A free-

wheeling diode D1 is connected across the DC motor.
When the MOSFET is turned off, the current through the
motor inductance will continue to flow. The MOSFET
drain voltage will rise to one diode-drop above the motor
supply voltage. The current will then flow through the
free-wheeling diode. The current will normally continue
to flow until the transistor turns on again. Most low-
voltage motor drive circuits employ Schottky power
rectifiers for the free-wheel diode. Schottky rectifiers
have a low forward voltage and a very fast reverse
recovery time. Both are important factors in a motor
drive application.

+12V
‘F300 D1
DC

Q1 Motor
P0.0/
CEXO0

VDD

P0.6/ .+ Speed
ADCOP ~J Control

Figure 2. DC Motor Drive Circuit

The power MOSFET is driven by an inverting gate
driver connected to P0.0. The port pins of ‘F300 are
configured by default as inputs with a weak 100 kQ
pullup enabled. The port pins will remain high until the
port is configured and the crossbar and peripherals are
enabled. The port pins will also be configured as inputs
with the weak pullup enabled while the reset pin is held
low. By using an inverting driver, the power transistor
will be off in the default state. If a non-inverting driver is
used, a 10 kQ pulldown resistor should be connected
between the port pin and ground.

The gate driver should have a 3 V compatible input level
threshold for use with a 3 VV microcontroller. If the motor
voltage is between 5V and 15V, the gate drive can be
powered directly off the motor supply voltage. If the
motor voltage is higher that 15 V, a separate gate drive
supply voltage is needed, typically 5V or 12 V. The
Maxim Integrated Products MAX626 or TC426 has a
3V compatible input, 5-20 V supply range, and 1.5 A
peak drive current capability. A logic-level power
MOSFET should be used when working with a gate

2 Rev. 1.1

SILICON LABS

AN191

drive supply voltage below 10 V.

The software for Example 1 is very simple. The main()
function initializes the clock, ports, and peripherals and
enters the while(1) loop. The while(1) loop reads the
value of the potentiometer voltage using the avgADC()
function and outputs the value to the PCAO 8-bit PWM
by writing to the PCAOCPHO special function register
(SFR).

The PORT_Init() function configures the port 1/O,
peripherals, and enables the digital crossbar. The PCAO
CEXO output is enabled by setting the appropriate bit in
the XBR1 SFR. The CEXO output is used for the 8-bit
PWM. The pin skip SFR XBRO is cleared so that no pins
will be skipped. This configures the PCAQ output on
P0.0. Clearing XBRO is not strictly required, as this is
the default state. P0.0 is configured for push-pull output
by setting bit 0 in the POMDOUT SFR. P0.6 is
configured as analog input by clearing bit6 in the
POMDIN SFR. Lastly, the crossbar is enabled by setting
bit 6 in the XBR2 SFR.

The system clock, SYSCLK, is configured to operate at
the maximum speed of 24.5 MHz. Programmable
counter array, PCAO, is configured to use SYSCLK
divided by four as a time-base for the 8-bit PWM. This
yields a counter clock period of 160 ns and an 8-bit
PWM frequency of 24 kHz (24.5 MHz/4/256 = 24 kHz).

PCAO module 0 is configured for 8-bit PWM mode by
writing 0x42 to the PCAOCPMO SFR. The PCAO
interrupt is not used in this example.

The ADC in Example 1 is used in the polled mode. The
ADCO_Init() function configures the ADC for polled
mode by clearing the ADCOCN SFR. P0.6 is selected as
the input for a single-ended measurement by writing
0xf6 to the AMXOSL SFR. The ADC gain is setto 1 and
a conservative frequency of 1 MHz is chosen for the
ADC clock. It is important to remember to also initialize
the voltage reference and configure the ADC to use Vpp
for full-scale by writing Ox0Oa to the REFOCN SFR.

The function readADC() reads the voltage on P0.6 one
time using polled mode and returns the ADC value. The
function avgADC() calls the readADC() function and will
return the average value of 64 samples. Averaging the
ADC reading minimizes the effects of noise and reduces
jitter in the PWM output.

When using the PCA 8-bit PWM mode, a value of 0x00
corresponds to a duty cycle of 100% and a value of
OxFF corresponds to a duty cycle of 0.39% at the CEXO
output. A duty cycle of 0% may be achieved by clearing
the ECOMO hit in PCAOCPMO SFR.

When using an inverting driver, the relationship is
reversed. A value of O0x00 corresponds to a 0% duty
cycle and a value of OXFF corresponds to a duty cycle of

99.6% on the MOSFET gate. A duty cycle of 100% may
be achieved by clearing the ECOMO bit in PCAOCPMO
SFR. All software examples in this application note
using 8-bit PWM are limited to 99.6% PWM for
simplicity.

There are some cases where a 100% duty cycle is
desirable. A 100% duty-cycle will effectively eliminate
switching losses. Since the MOSFET never turns off,
there are no switching losses in the MOSFET and no
losses in the diode. The only power losses are
conduction losses in the power MOSFET. If the motor is
expected to run at full-speed most of the time, a
maximum duty cycle of 100% is desirable.

In some motor control systems a maximum duty cycle of
somewhat less that 100% is actually desirable. If a
cycle-by-cycle current limit is used, a short low-time is
necessary to reset the over-current latch. When using a
high-side driver with a bootstrap driver, a short low
pulse is needed to recharge the bootstrap capacitor.
When using a transformer isolated gate driver, a DC
signal is not permitted.

Rev. 1.1 3

SILICON LABS

AN191

12v 12v
‘F300 ' '
Q3 Q4
P0.2 —|>—'Wv—‘ DC FWV_<17
Motor
Q1 Q2
P0.0/CEX0 —‘>0—W\J
P0.1/CEX0
P0.3
iVDD
Speed
P0.6/ADCOP >
{Command
P05 L Reverse
L Command

Figure 3. DC Motor Full-Bridge Circuit

3. Example 2—DC Motor with Reversing

Permanent-Magnet DC Motors are often used in
applications that require the ability to reverse the
direction of the motor. To reverse the direction of
rotation, it is necessary to reverse the polarity of the
voltage on the motor. This requires the use of an H-
Bridge. An H-Bridge has four transistors as shown in
Figure 3. When driving the motor in the forward
direction, Q4 is turned on and a PWM signal is applied
to transistor Q1. To drive the motor in the reverse
direction, Q3 is turned on and a PWM signal is applied
to Q2. In this example, the lower transistors are used for
PWM speed control and the upper transistors are used
for steering. Using this topology, it is possible to provide
variable speed control in both directions.

In Figure 3, N-channel power MOSFETs are used for
the low-side transistors and P-channel power MOSFETs
are used for the high-side transistors. Using
complementary power MOSFETSs is very cost effective
solution for DC motor drives below 20 V. As shown in
Figure 3, the low-side gate drivers are inverting and the
high-side gate drivers are non-inverting. The gate driver
polarities are chosen to ensure that the power
transistors are off while the port pins are in the reset
configuration with the weak pullups enabled. A suitable
gate driver IC is the TC428. The TC428 has one

inverting and one non-inverting gate driver, 3V

compatible inputs, and a 5-20 V supply range.

In most applications, the crossbar is configured once
and then never modified. However it is possible to
modify the contents of the crossbar registers after
initialization. In this example the digital crossbar is used
as a PWM multiplexer by writing to the pin skip SFR
XBRO “on the fly”. This technique is also used in
software examples 3 and 4. Extreme care should be
used when writing to the pin skip register in this fashion.
Changing the crossbar configuration may affect the
states of other I/O pins.

The software for this example builds on the code of
Example 1. The main loop now includes an if statement
that checks the state of the reverse switch SW1. When
the reverse button is pressed, the PWM is disabled and
all of the PO outputs are disabled by writing OxFF to PO.
When the button is released the motor will reverse
directions.

The initialization functions are similar to Example 1,
except that P0.0-3 are configured as push-pull outputs
and PO0.3 is initially high.

The reverse() function is called to reverse the
direction of the motor. A flag bit Fwd is used to save the

Rev.

11

SILICON LABS

AN191

state of the motor. The Fwd bit is toggled and then used
to determine which outputs to activate.

The general procedure to safely modify the crossbar is
to first disable the crossbar by clearing the XBARE bit to
zero. Then the crossbar is re-configured by writing to
the crossbar registers, pin skip registers, and port
configuration registers as necessary. Once re-
configured, the crossbar is enabled by setting the
XBARE bhit to 1.

In this example, the PWM is first disabled by writing
0x00 to PCAOCPMO and then all outputs are forced high
by writing OXFF to PO. This ensures that all outputs are
forced high before reconfiguring the crossbar. The
crossbar is then re-configured using the procedure
described above. First the crossbar is disabled by
clearing the XBARE bit to zero. The new pin skip value
for the ‘F300 is written to the XBRO SFR. The new PO
state is written to PO. The values written to XBRO and
PO depend on the state of the Fwd bit. Once XBRO and
PO are re-configured, the XBARE bit is set to 1 to
enable the crossbar. The 8-bit PWM mode is then
enabled by writing 0x42 to PCAOCPMO.

There is a potential problem reversing the motor in this
manner. While the reverse switch SW1 is held down the
motor may continue to spin for some time due to the

a) forward

b) coast

inertia of the motor. While the motor is turning, it will
generate a back-emf proportion to the speed of the
motor. If the reverse button is released before the motor
stops spinning, the motor back-emf will be shorted out
by the upper transistors as described below.

Referring to Figure 4, suppose Q4 is initially on and the
motor is turning in the forward direction. Assume the
motor is turning and the back-EMF is about 6 V. Now
the switch is pressed and all four transistors are turned
off. The right side of the motor will be 6 V higher than
the left side of the motor. Then the switch is released
and Q3 is turned on. The left side of the motor is pulled
up to the supply voltage and the back-emf of the motor
is shorted by the internal diode of Q4.

The end result is that the motor stops and all energy
stored in the mechanical inertia of the motor is dumped
into Q4. This could easily damage the upper transistors
during reversal. In some applications with a large
frictional load, a fixed delay may be adequate to ensure
the motor has time to stop. In other applications, the
motor may take several seconds to come to a complete
stop. A universal solution to this problem is
demonstrated in "Example 3—DC Motor with Soft
Reversing," on page 6.

a) reverse

Figure 4. DC Motor Reversing Hazard

Rev. 1.1 5

SILICON LABS

AN191

?VDD

P0.6/ADCOP > Speed
VDD i
I
PO.7 Reverse
‘F300 +12V

P0.0/CEX0

]

P0.4/ADCOP

+12V

P0.5/ADCON
P0.1/CEX0

P0O.3

Figure 5. DC Motor Drive with Voltage Sensing

4. Example 3—DC Motor with Soft
Reversing

This software example for a DC motor builds on
Example 2 and provides soft reversing. To safely
reverse a DC motor it is necessary to determine if the
motor is still in motion.

A simple and effective method to determine if the motor
is still spinning is to measure the differential voltage
across the motor terminals. The ADC on the ‘F3xx
family can be configured to measure the differential
voltage between any two inputs of the analog
multiplexer. The programmable window detector may
also be used to determine if the differential voltage has
fallen within preset limits. In this software example, the
motor will reverse after the differential motor voltage
remains below 3% of full scale for 100 ms.

The hardware for this example is similar to Example 2
except for the addition of two resistor dividers
connected to the motor terminals, as shown in Figure 5.
The sense voltage outputs from the resistive dividers
are connected to P0.4 and P0.5. The reverse switch is
now on PO.7.

The software builds on Example 2. The main loop has
been modified to detect motor stop. The detectStop()
function first configures the ADC to measure the
differential voltage between P0.5 and P0.4 by writing
0x54 to the AMXOSL SFR. The ADC and window
detector are both used in polled mode. If the ADC value
is within the preset window a counter is incremented. A
10 ms delay using timer TO sets the sample time. Any
sample outside the window will reset the counter. It will
take 10 consecutive samples within the window before
exiting the while loop. The detectStop() function will
re-configure the ADC to measure the speed
potentiometer before returning to the main loop.

The preprocessor macros VWINDOW, DTIME, and
GSAMP are used to set the voltage window, delay time,
and number of good samples required. These constants
may be modified to suit a particular motor system.

6 Rev. 1.1

SILICON LABS

AN191

VDD
VDD
P0.7/ADCOP > Speed
j_ P gl BLDC
HgII-Effect = ssSs 2V Motor
POO ensors
PO.1 ¢
P0.2
Q4 s I: Q6
P1.4 —D—W\,—‘ M
a1 Q2 a3
P1.0/CEX0 | > W
P1.5
P1.1/CEXO0
P1.6
P1.2/CEX0

Figure 6. Brushless DC Motor Drive

5. Example 4—Brushless DC Motor

Brushless DC (BLDC) motors offer some advantages
over conventional brush-commutated DC motors. The
electronics and sensors effectively replace the role of
the brushes, offering long life, reduced maintenance,
and no brush noise. The torque-speed characteristics of
a properly commutated BLDC motor are identical to the
DC motor as shown in Figure 1. Thus, Brushless DC
motors exhibit the same desirable qualities that make
DC motors so well suited for variable speed control.
This example provides simple open-loop control of a
BLDC motor using Hall-effect sensors to control the
motor commutation. The speed of the BLDC motor is
controlled wusing a simple potentiometer. The
characteristics of the BLDC motor controlled in this
manner are similar to the DC motor in Example 1.

The hardware required for this example is illustrated in
Figure 6. The C8051F330 was chosen for this example
due to the requirement for at least 10 I/O pins. The
motor is driven by six power transistors in a three-phase
bridge configuration. The lower transistors Q1-3 are N-
channel power MOSFETs. The upper three transistors
are P-channel power MOSFETSs. This simplifies the gate

drive arrangement. Again, complementary gate drivers
are used so that the power transistors are off in the
default state. The gate drivers for the lower transistors
Q1-3 are connected to P1.0-P1.2. and the upper
transistors are connected to P1.4-P1.6. The analog
speed input is on P0.7.

The Hall-Effect sensors are connected to P0.0—P0.2.
Hall-Effect sensors have open-collector outputs and
require pullup resistors. Check the motor specifications
to ensure the Hall-effect sensors are configured
properly. The open-collector outputs are usually 3V
compatible. However, the Hall-effect sensors also
require a bias supply that typically requires more that
3.0 V. In most systems, the Hall-effect sensors can be
powered off the motor supply voltage or the gate drive
supply voltage.

When the MCU hits a breakpoint, the pins are effectively
frozen in time. While this behavior is generally
desirable, a breakpoint may leave the PWM outputs in
the active state. A brushed DC motor will operate at full-
speed when this occurs. However, a BLDC motor will

Rev. 1.1 7

SILICON LABS

AN191

stall with full voltage across one winding. The BLDC
motor stall current is only limited by the internal
resistance of the winding. This will most likely damage
the power MOSFETs. The recommended procedure is
to always disconnect the motor leads before single
stepping code or using breakpoints. With the motor
wires disconnected there is no path for current to flow.

The software for the BLDC motor example contains
many new elements. A single PCAO module is used in
the 8-bit PWM mode. The crossbar is used as an output
multiplexer to apply the PWM signal to P1.0, P1.1, or
P1.2 as needed. The upper transistors are controlled by
writing to P1.

The PORT_Init() function configures the crossbar and
output pin assignments. The crossbar special function
registers names and functionality for the ‘F330 are
different than the ‘F300. The programmable counter
array CEXO output is enabled by writing 0x01 to the
XBR1 SFR. The crossbar is configured to skip all PO
pins by writing OXFF to the POSKIP SFR. The P1SKIP
SFR is initialized to output the CEXO signal on P1.0.
The P1SKIP SFR will be used later to multiplex the
CEXO signal to P1.0, P1.1, or P1.2. P1.0-P1.2 and
P1.4-P1.6 are configured as push-pull outputs. P0.7 is
configured as an analog input.

The programmable counter array time-base is
configured to use SYSCLK/4, and the counter is started.
However, the Module 0 mode SFR is not initialized for
8-bit PWM. The CEXO signal, initially on P1.0, will
remain high until the Hall-effect position is determined.

The main() function first initializes everything and sets
the start flag bit. The main loop first checks the
position of the Hall-effect sensors using the
hallPosition() function. If the start flag bit is set or
the Hall position has changed, the motor is commutated
by calling the commutate() function. Next the speed
input is read and the speed setting is written to the
PWM output.

The hallPosition() function returns a zero on an
error condition. This occurs if the Hall-effect inputs are
all high or all low. If an error occurs, the main loop
disables all outputs by calling the coast() function. The
start bit is also set on an error condition to force a
commutation on the next valid Hall position reading.

The readHalls() function reads and debounces the
Hall-effect code on the Hall-effect input port pins. This
function waits for three consecutive identical readings.
This reduces the likelihood of an erroneous reading
while the Hall-effect code is changing. The number of
consecutive samples required for a good reading can
be modified for a particular system by changing the
GSAMP preprocessor macro.

The hallPosition() first reads the Hall-effect code by
calling the readHal Is() function described above. The
Hall code pattern is stored in the constant array
hallPattern[]. A single line for loop with post
decrement is used to find the corresponding index for
the matching Hall-effect code. The hallPosition()
function returns a value 1 through 6 if it finds a matching
pattern. If no match is found the hallPosition()
function returns a zero value.

The commutate() function first disables the PWM by
writing Ox00 to the PCAOCPMO SFR. The upper
transistors are also disabled by writing Oxff to P1. The
commutate() function uses the index obtained from the
hallPosition() function. Two constant arrays,
skipPattern[] and PlPattern[], are used to store
the patterns for the P1SKIP and P1 sfrs. The new
values are written to the P1SKIP and P1 sfrs using the
pattern index. Lastly, the 8-bit PWM is enabled by
writing 0x42 to the PCAOCPMO SFR.

The commutate() function is used to initialize the
outputs on start-up, to change the state of the outputs
when the Hall position changes, and to restart the motor
after a Hall error has been corrected.

The patterns stored in hal IPattern[], skipPattern[]
and PlPattern[] may need to be modified to suit a
particular motor system. There is no universal standard
for the Hall-effect pattern or the commutation pattern.
Consult the motor manufacturers data sheet for the
particular motor you are using. Carefully check both
patterns against the manufacturers data sheet. It may
be necessary to swap the bit patterns for phase A and
phase C to obtain the desired bit pattern. Also, check
the correspondence between the Hall-effect pattern and
the commutation pattern. It may be necessary to
change the offset between the two patterns. The
patterns listed are for a Pittman N2311A011 BLDC
motor.

8 Rev. 1.1

SILICON LABS

AN191

AC
Motor
Voo
P0.6/ADCOP =§ Speed
Vum Vm Vwu
‘F300
£ -’Wv—J £ -’Wv—J £ -’Wv—J
v E v E v E
= % =2 % =2 %
a ?3 a § a §
% a % a % a
O S O 5 O 5
2 2 2
P0.0/CEXO0 | = = =
P0.1/CEX1
P0.2/CEX2

AAA
\AAJ

AAA

AAA
\AAJ

Figure 7. AC Induction Motor Drive

6. Example 5—AC Induction Motor

The previous examples have focused on small low-volt-
age motors. DC motors and BLDC motors offer
competitive solutions for low-voltage motor drive sys-
tems. AC Induction motors are typically used only in off-
line applications. The C8051F3xx family may be used to
provide a cost-effective solution for constant V/Hz con-
trol of Fractional Horsepower motors. Fractional
Horsepower motors range from 1/4 to 3/4 horsepower
and normally have an operating voltage of 110 V¢ to
240 Vpc.

AC Induction motors can be used for a wide range of
applications with radically different performance
requirements. The simplest control method is called
constant V/Hz control. This control methodology is used
for variable speed or adjustable speed AC induction
motor drive systems. AC inductions motors using
constant V/Hz control can be used for fans, blowers, air
handlers, pumps, submersible pumps, and
compressors. A C8051F3xx MCU can be used to
provide a low-cost solution for these applications.

At the other end of the performance spectrum, vector

control may be used to provide a high-performance
motion control system that meets or exceeds the
performance of a DC servo drive. Vector control
normally requires the use of a DSP to perform complex
matrix algebra transforms. The intellectual appeal of
Vector control tempts engineers to use vector control in
applications that do not really require the performance.
However the cost-conscious system designer will
appreciate much lower cost of the constant V/Hz
system.

The simplified schematic for Example 5 AC Induction
motor is shown in Figure 7. A three-phase transistor
bridge is used to drive the AC Induction motor. The
power transistors might be power MOSFETs or
insulated gate bipolar transistors (IGBTs). IGBTs will
usually provide lower power losses for 230 V¢
applications greater than 1/4 HP. P0.0, P0.1, and P0.3
are used to control the gate drive of the three-phase
bridge.

High-Voltage ICs may be used to provide a simple, low
parts count, cost-effective gate drive. Dead-time is

SILICON LABS

Rev. 1.1 9

AN191

required to prevent cross-conduction and increased
power losses. The switching time is limited by the
performance of the power transistors and the circuit
parasitics. The dead-time must also account for any
mismatch in the turn-on and turn-off delay of the
system. High-voltage ICs are available with built in
dead-time for little or no additional cost.

The IR2103S is a 600 V half-bridge gate driver with a
fixed dead-time of 520 ns and 3 V compatible inputs.
The IR2104S provides the same features plus an active
low shut-down that disables both outputs. The shut-
down feature is very useful in more complex systems for
both start-up and fault protection.

This example provides simple open loop V/Hz control
for AC Induction motors using the C8051F300 MCU.
The MCU reads the value of a speed -control
potentiometer and generates the three-phase sine wave
PWM required to drive the power transistors. Three
PCA modules configured for 8-bit PWM are used to
generate three-phase PWM. The three-phase PWM
waveforms are shown in Figure 8.

m_ g D e vl L el
[T . I : PR IR TE]
|....|.r‘...i....i [P IR PRI EFR |
,,J,,,,,,
2_)__...mthl-u-rm :...._“.‘-‘-'. Uiy
R HIN, I SR R b i bbb st
1) PO.O 2 v °© 10us T
2) PO.1 2 v . 10 us

SRR A= SN R T
Figure 8. Three-Phase PWM

PCAO outputs CEXO0, CEX1, and CEX2 are enabled by
writing OxCO to the XBR1 SFR. The XBRO SFR is
cleared to not skip any pins. This configures the PCAQ
outputs on P0.0, P0.1, and P0.2. The first three outputs
P0.0-P0.2 are configured as push-pull outputs by
writing 0x07 to the POMDOUT SFR. PO0.6 is configured
as input for the analog speed control. When the
crosshar is enabled this will enable the three outputs.

All three PCA modules are configured for 8-bit PWM
mode by writing Ox42 to their respective capture/
compare mode registers. The PWM high times are
initialized to 50%.

At startup, P0.0-P0.2 will be initially pulled high by the

weak pullups by default. Pulldown resistors are used
force the output low at start-up. This turns on the lower
transistors and charges the bootstrap supply used for
the high-side gate drive. The PCA is initialized before
the crossbar is enabled. When the crossbar is initialized
a 50% waveform will appear on outputs P0.0 through
PO.2.

The main loop reads the ADC using averaging and
stores the value in the global variable Volts. All sine
wave generation and updating is done using interrupts.

Timer TO is configured for 16-bit counter mode 1. The
timer uses the 24.5 MHz SYSCLK divided by four. The
timer is started and TFO is set to a 1 to force an initial
interrupt.

The Timer Interrupt Service Routine Timer_ISR(Q) is
used to generate a periodic interrupt with a period of
about 1 ms. After setting up the next interrupt, the
Timer_ISRQ) will call the Update() function.

The Update() function updates the three PWM duty
cycles based on a sampled sine wave. The value of
theta is calculated based on the relationships illustrated
in Equation 11. First the global variable Volts is copied
to the local variable omega. The variable omega is scaled
so that a value of 0x04 corresponds to a sine frequency
of about 1 Hz. The value of omega is integrated by
adding omega to the global variable Sum. Sum is a 16-bit
unsigned int data type. The upper byte of Sum is copied
into theta.

ooV
GZIcodt

0=Zo

Sum = Sum + omega

theta = Sum / 256

Equation 1. Equation 1

The 8-bit variable theta is passed to the sineWave()
function. The value returned from the sineWave()
function is stored in PCAOCPHO. This sets the duty
cycle of CEXO. The other two PWMs are updated using
theta plus 0x55 and theta plus OXAA. This generates
three sine modulate PWM signals 120° apart.

The sineWave () function uses the sine[] look-up table
containing 256 signed 8-bit values. The sine[] value
corresponding to theta is multiplied by the Volts
variable. The most significant byte of the product stored
in an 8-bit variable. An offset of 0x80 is added to the
output value to provide a sine wave centered about
50%.

10 Rev. 1.1

SILICON LABS

AN191

7. Example 6—PWM using High-
Speed Output Mode

The 8-bit PWM mode of the PCA provides sufficient
resolution for most small motor drive applications. The
PWM frequency is normally chosen to be just above the
audible range. The optimum PWM frequency for small
motors is in the range of 16 to 24 kHz. Integral-
Horsepower AC Induction motors often employ lower
switching frequencies to reduce switching losses. The
24 kHz frequency is suitable for most small motor
drives.

The 8-bit PWM frequency can be set to 8, 24, or 96 kHz
when operating from a system clock frequency of
24.5 MHz. An 8-bit PWM frequency of 16.0 or 19.1 kHz
may be obtained by using TO overflow as the PCA clock
source.

Some applications may require more resolution than 8
bits. Higher resolution may be required to achieve
speed regulation of better than 1% using DC or BLDC
motors. AC Induction motor systems that require
greater than 100 to 1 speed range may also require
higher resolution.

Higher resolutions and arbitrary PWM frequencies can
be obtained by using the high-speed output (HSO)
mode of the programmable counter array to generate a
PWM signal. The HSO mode can be used to generate
PWM waveforms with up to 16-bit resolutions and 40 ns
edge timing. This corresponds to an effective resolution
of 10.25 bits or 0.0816% at 20.0 kHz.

The trade-off is that the software latency limits the
minimum high-time and low-time. The MCU must have
sufficient time to interrupt the current process and write
the new values to the output compare registers before
the next edge is scheduled to occur. The latency can be
minimized by assigning the PCAO to high priority,
caching the edge timing data, and using an alternate
register set for the interrupt service routine. The CPU
expends a significant portion of its available processing
capability servicing the frequent PCA interrupts.

The software for Example 6 reads the value of the
speed control potentiometer and outputs a 20.0 kHz
PWM waveform on P0.0. The system clock, ADC, and
port initialization are identical to Example 1. The
PCAO_Init() function configures the PCA to use the
system clock and configures Module 0 for high-speed
output mode. The PCA initialization also schedules the
first PCA interrupt.

Two global variables NextEdge and cycle are used by
the PCAO Interrupt service routine. NextEdge is used to
cache the edge timing data one edge ahead of time to
reduce latency. The global bit cycle is used to keep

track of which edge is to occur next. Since the HSO
mode will toggle the output, a software flag bit is
required. Using a flag bit is more robust than polling the
output pin state because it is independent of compare
matching.

The preprocessor macro LATENCY is set to a value just
greater than the update latency to provide reliable
operation. Preprocessor macro calculations are used to
calculate PERIOD and HTSPAN. The high-time span
HTSPAN is the PERIOD minus two times LATENCY.

The main loop polls the ADC using averaging. The
value from the ADC is multiplied by the desired high-
time span HTSPAN. The product is then incremented by
adding LATENCY. The final result is then stored in a
global variable HiTime. Temporary variables x and y are
used to calculate the intermediate values. The scaling
operation requires a long int data type. The final
result is 16-bits. The global variable HiTime should not
be used for intermediate calculations. The interrupt
service routine might pickup the new value at any time
and would use nonsensical values for the PWM. The
PCAO interrupt is also temporarily disabled during the
HiTime update to ensure that an interrupt does not
occur until both bytes have been updated.

The PCA interrupt service routine PCAO_ISR() first
updates the PCAOCPxO0 registers and then clears the
PCAO Module 0 capture/compare flag CCFO. Once the
flag has been cleared, it is safe for the next interrupt to
occur. Depending on the state of the cycle bit, the
NextEdge is incremented by HiTime or Period minus
HiTime.

A comparison of the HSO PWM is shown versus the 8-
bit PWM in Figure 9. The frequency for the HSO PWM
is exactly 20 kHz and the minimum high time is 1.8 pus.
The frequency for the 8-bit PWM is 24 kHz and the
minimum high-time is 160 ns.

Rev. 1.1 11

SILICON LABS

i) PO.O/CEXQ 2 Vv . 10 lus PwM using HsSO mode
2) PO.O/CEXO , 2, ¥ |, 10 us B-bit PwM mode ., |, .,

Figure 9. Minimum High-Time Comparison

8. Example 7—Center-aligned PWM

This example demonstrates how to use the PCA high-
speed output mode to generate center-aligned PWM
waveforms with dead-time. Center-aligned PWM with
dead-time may be used for DC, BLDC, or AC induction
motors. DC and BLDC motors that require active
braking must use a PWM scheme that alternatively
turns on the top and bottom transistors. Motors that
provide positive and negative torque control in both
forward and reverse directions are called servo motors
or four-quadrant drives. Servo motors also require
pulse-width modulating both upper and lower
transistors. AC Induction motors always use this type of
PWM scheme to generate sine waves. When pulse-
width modulating both upper and lower transistors,
dead-time is required between the activation of the
upper and lower transistors. The dead-time function
may be performed by the MCU or integrated into the
gate drive.

Using center-aligned PWM has benefits. It is very easy
to generate the required dead-time. The complementary
PWM signal with dead-time may be obtained by adding
a small number to the high-time of the first signal and
inverting. Using center-aligned waveforms also has the
benefit of doubling the frequency between phases and
reducing the ripple current. This is particularly important
for large motors with low inductance.

The desired center-aligned waveforms are illustrated in
Figure 10. The period is measured with respect to the
center of the high-time of the top PWM signal. When
multiple PWM channels are used, all signals are aligned
with respect to the center of the waveforms. The top
and bottom PWM signals shown in Figure 10 are active

high. Both top and bottom signals are inactive during
the dead-time.

))
S E
i i
© O
© ©
))
1 [a)] I o
! — — | —
To | i
p L. L‘
] 9! o!
c! =!
— Q| [0]] p—
Oj Oj
Bottom i i

;4— Period —»:

Figure 10. Center-Aligned PWM Signals

Three PCA modules are used to generate the desired
waveforms. One module is used as a master. The
master module is the only module that generates
interrupts. The master channel generates 50% duty
cycle waveform. The center of the high-times and low-
times of the other channels are aligned with the rising
and falling edges of the master channel as shown in
Figure 11.

The F300 port I/O and pin assignments are similar to
Example 5. The pin skip SFR XBRO is cleared and no
pins are skipped in the priority crossbar assignments.
The XBR1 SFR is initialized to output CEXO, CEX1, and
CEX2. The value 0x07 is written to POMDOUT to
configure P0.0, P0.1, P0.2 as push-pull outputs.

The main loop is identical to Example 6. The
PCAO_Init(Q) function initializes all three channels for
high-speed output mode. The interrupt is enabled only
on Module 0. The PCA initialization function schedules
the first interrupt and next edges for a 50% duty cycle.
The relative polarities of all signals are defined by the
initialization. P0.2 is inverted because it does not have
an edge scheduled for the first half-cycle.

The PCA interrupt service routine PCAO_ISR() is similar
to Example 7. Three 16-bit PCAOCP compare special
function registers must by updated before the interrupt
flag is cleared. The LATENCY macro value must be
increased to account for the extra instructions.

The NextEdge global variables are calculated for all
three modules. The calculations are different depending
on the state of the cycle bit.

The center-aligned module’s next edge values are
calculated relative to the master module. If cycle is 1,
the center-aligned NextEdgel and NextEdge2 are
calculated by first incrementing NextEdgeO, then adding

12 Rev. 1.1

SILICON LABS

AN191

or subtracting the Hitime from NextEdgeO, and then
adding or subtracting the dead-time. If cycle is O,
NextEdgel and NextEdge2 are calculated by adding or
subtracting the Hitime from NextEdgeO, adding or
subtracting the dead-time, and incrementing

NextEdgeO. The minimum pulse width is reduced by
adding half the LATENCY. This shifts the center-aligned
waveforms slightly so that the edges are aligned with
channel at

the master
conditions.

the minimum high-time

Figure 11. Center -Aligned PWM Waveforms

The measured center-aligned PWM waveforms are
shown in Figure 11. The top waveform is the master
channel output on P0.0. The scope is triggered off the
master channel. The middle and bottom waveforms are
P0.1 and P0.2. These signals may be used to drive the
upper and lower transistors of a half-bridge. The dead-
time is configured for inverting gate drivers. P0.1 and
P0.2 are never low at the same time. There is a finite
dead-time between the rising edge of P0.1 and the
falling edge of PO0.2.

The F300 has three PCA modules and may be used to
provide two complementary center-aligned waveforms
with dead-time. Two complementary PWM waveforms
are sufficient to drive a DC motor using a half-bridge.
This provides active braking and synchronous
rectification. A simplified diagram of a half-bridge motor
drive is shown in Figure 12.

+12V +12V

‘F300

QL
PO.1/CEXL —D—'Wv—‘
Q2
P0.2/CEX2 —{>o—WvJ
VDD

>i Speed
1

Command
Figure 12. Half-Bridge DC Drive

One 1/0O pin can be saved by moving the master
channel to CEX2 and configuring the crossbar to output
only CEXO and CEX1. The master module output is
useful for debugging purposes, but may not be required
in some systems.

The F310 has 5 PCA modules and may be used to
generate four center-aligned PWM waveforms with
dead-time. Four center-aligned PWM waveforms may
be used to drive the DC servo motor as shown in
Figure 13.

Motor

P0.6/ADCOP

Rev. 1.1 13

SILICON LABS

AN191

‘F310

P1.0/CEX1

P1.1/CEX2

P1.2/CEX3
P1.3/CEX4

+12V +12 'V
Q1 Q3
| >—‘W"‘| DC |—‘W"< Ii
Motor
Q2 Q4

| D]

Figure 13. DC Servo Drive

14

Rev. 1.1

SILICON LABS

AN191

9. Example 8—Quadrature Decode

Closed-Loop speed control requires position feedback.
There are many different kinds of position sensors.
Common examples are optical encoders, Hall-effect
encoders, tachometers, and potentiometers.

This software example demonstrates a low-cost solution
for the most common position sensor: the optical
guadrature encoder. An optical encoder uses a
semiconductor photo-detector and LED to detect slots
in a disc or dark bands on a reflective wheel. Single
channel optical encoders provide speed feedback but
cannot detect which direction the motor is turning. Two-
channel quadrature encoders are capable of providing
both speed and direction.

The quadrature decode software can be combined with
the DC motor control software used in Example 2 or the
Center aligned PWM used in Example 7 for servo-
positioning applications. This provides an integrated
solution for closed loop motor control to reduce external
parts count and reduce system cost.

The two outputs of a quadrature encoder, CHA and
CHB, are 90° out of phase as shown in Figure 14. If the
motor is turning in the forward direction, CHA will be
leading CHB. If the motor is turning in the reverse
direction, CHB will be leading CHA. The direction of
rotation may be detected by taking the exclusive OR of
the two signals. The results of taking the exclusive OR
of CHA and CHB is indicated by the letters T and F in
Figure 14. When the motor is turning in the forward
direction, immediately after any edge detection on CHA,
the XOR of CHA and CHB will be true. Immediately after
any edge detection on CHB, while turning in the forward
direction, CHA XOR CHB will be false.

CHA leading CHB

Ty Ty T T
T CHA
©
= L
o
2 CHB °
Fi IF Fi IF I
m
I
CHB leading CHA O
SRR
o X
» CHA ;
S o
& CHB
T TE AT AT

Figure 14. Quadrature Decoder Operation

Using this information a simple algorithm can be
obtained using edge triggered interrupt events. On CHA
edge interrupts, the position should be incremented if

CHA XOR CB is true, or decremented if false.
Conversely, on CHB edge interrupts the position should
be incremented if CHA XOR CHB is false, or
decremented if true.

The hardware configuration for software Example 8
requires that quadrature encoder CHA be connected to
P0.0 and CHB be connected to P0.1. Pullup resistors
are typically required for most quadrature encoders.
Some encoders are specified to source only a few
microamps. These will also require pullup resistors. The
default weak pullups on PO are typically not strong
enough to drive the encoder signals high with an
appropriate rise time.

Ensure that the quadrature encoder is compatible with
3V CMOS logic. The open-collector outputs of most
encoders should work with a pullup resistor to 3 V. The
pullup resistor value should be decreased to keep the
sink current approximately the same value. The
encoder also requires a voltage power supply for the
LEDs and internal circuitry. Some encoders may require
a regulated 5.0 V supply. However, the open-collector
outputs can still be used with pullups to a 3 V supply.

The software for Example 8 uses the UART with an
ASCII terminal to display the position of the quadrature
encoder. The position is stored in the global variable
Position. The position is updated by two interrupt
service routines for external interrupts INTO and INT1.

The UART is enabled and P0.4 is configured for push-
pull output. P0.0 and PO.1 are skipped as a
precautionary measure. This will be required if any
other peripherals are enabled in the crossbar.

The external interrupt initialization function
EINT_Init() configures INTO and INT1 to use P0.0
and PO.1 respectively. Both INTO and INT1 are
configured for edge activated interrupts. The initial
trigger polarity for each channel is determined by polling
P0.0 and PO.1. The external interrupts are configured
for high priority and enabled.

The external interrupt service routines are identical
except for respective change in the interrupt flag,
polarity bit, and count direction. First the trigger polarity
bit is toggled. Then a nested if...else statement is
used to test the state of both polarity bits. For INTO, if
both polarity bits are true or both polarity bits are false,
the position will be incremented. Otherwise, the position
will be decremented. For INTL1, if both polarity bits are
true or both polarity bits are false, the position will be
decremented. Otherwise, the position will be
incremented. This is the equivalent of a logical
exclusive OR function. This implementation uses simple
bit tests and is very code efficient.

Rev. 1.1 15

SILICON LABS

AN191

1) PO.OCHA 2 V 25 ms : : o
2) PO.1 CHB , 2, V.|, ,.25m5 |, 0.0l]

Figure 15. Quadrature Decode Measurements

The measured waveforms for a quadrature encoder are
shown in Figure 15. This type of quadrature decode
using interrupts is a viable solution up to speeds of
about 50,000 counts per second. The number of counts
per second is four times the number of pulses per
second. There are four edges in each pulse. This is
suitable for a medium-speed motor (<8000 RPM) with a
low-resolution encoder (100 ppr) or a low-speed motor
(<1500 RPM) with a high-resolution encoder (500 ppr).
This performance range covers many consumer and
automotive applications. High-performance industrial
servo drives typically require much higher count rates
up to 1 million counts per second. These types of
applications will require a hardware based quadrature
decoder interface.

16 Rev. 1.1

SILICON LABS

AN191

APPENDIX A—DC MoTOR CODE

//
//
//
//
//
//
//
//
//
//
//
//

Example 1
DC Motor Control

Copyright 2004 Silicon Laboratories Inc.

AUTH: KAB
DATE: 12MARO4

This program provides simple DC motor control using the PCA 8-bit PWM Mode.
The ADC is used to read the potentiometer voltage on PO.6. The ADC uses
polled mode and 64 sample averaging. The 8-bit PWM is configured to operate
at 24 kHz. The PWM high-time varies from a minimum of 160 ns to a maximum of

// 100%.
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval “c’
//
/[-
// Includes
/-
#include <c8051f300.h> // SFR declarations
/[-
// Function PROTOTYPES
/-
void SYSCLK_ Init (void); // Initialize SYSCLK
void PORT_Init (void); // Initialize XBR and Port Pins
void PCAO_Init (void); // Initialize PCAO
void ADCO_Init (void); // Initialize ADC
unsigned char readVin(void); // read ADC using polling
unsigned char avgVin(void); // returns avg ADC reading
/= m e
// MAIN Routine
/)
void main (void)
{

PCAOMD &= ~0x40; // Disable Watchdog Timer

SYSCLK_Init (); // Initialize system clock

PORT_Init Q; // Initialize crossbar and GPIO

ADCO_Init(Q); // Initialize ADC for polled mode

PCAO_Init ; // PCAO for 8-bit PWM

EA = 1; // enable global interrupts

while (1)

{

PCAOCPHO = avgVin(Q); // get avg reading and output to PWM

3

}
Rev. 1.1 17

SILICON LABS

AN191

S
// SYSCLK_Init
[
//
// This routine initializes the system clock to use the internal 24_5MHz
// oscillator as its clock source. Also enables missing clock detector reset
// and the VDD Monitor.
//
void SYSCLK_Init (void)
{
OSCICN = 0x07; // configure internal oscillator for
RSTSRC = 0x06; // enable missing clock detector
// and VDD Monitor.
}
/)
// PORT_Init
/)
//
// Configure the Crossbar and GPIO ports.
// PO.0 - /PWM - active low PWM signal
// PO.1 -
// PO.2 -
// PO.3 -
// PO.4 -
// PO.5 -
// PO.6 - Analog Input
// PO.7 - C2D
//
void PORT_Init (void)
{
XBRO = 0x00; // don’t skip any pins
XBR1 = 0x40; // Enable CEXO on PO.0
POMDOUT = 0x01; // Enable P0O.0 as a push-pull output
POMDIN = ~0x40; // Configure P0.6 for analog input
XBR2 |= 0x40; // Enable crossbar
}
/)
// PCAO_Init
/)~
//
//
void PCAO_Init (void)
{
PCAOMD = 0x02; // PCA uses sysclk/4, no PCA interrupt
PCAOCPMO = 0x42; // Module 0, 8-bit PWM Mode
PCAOL = 0x00; // reset the timer
PCAOH = 0x00;
PCAOCPLO = 0x00;
PCAOCPHO = 0x00; // Initialize to minimum duty
CR = 1; // Start PCAO timer
}
18 Rev. 1.1)

SILICON LABS

AN191

// ADCO_Init

void ADCO_Init (void)

{
ADCOCN = 0x40;
AMXOSL = Oxf6;
ADCOCF = 0x81 ;
REFOCN = 0xOaj;
EIE1 &= ~0x04;
ADOEN = 1;

}

unsigned char readVin(void)
{

ADOINT = 0;

ADOBUSY = 1;

while (TADOINT);

return ADCO;
T

unsigned char avgVin(void)

{

unsigned char i, result;
unsigned int sum;

sum = 0;
for (i

{

}

64; 1 '=0; i--)

sum += readVin();

result = (unsigned char)(sum>>6);

return result;

/7
//
//
//
//
//
//
//

//
//
//

//

//

//
//

Low-power tracking mode;

ADCO conversions are initiated
on writes to ADOBUSY;

select P0.6, single-ended
ADOSC=4 gain =1

ADC uses Vdd for full scale
disable ADCO EOC interrupt
enable ADC

clear ADCO end-of-conversion
initiate conversion
wait for conversion to complete

repeat 64 times
read ADC and add to sum

divide by 64 and cast to uchar
return average reading

SILICON LABS

Rev. 1.1 19

AN191

APPENDIX B—DC MOTOR WITH REVERSING CODE

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

VO
Vo
VO
Vo
un

Example 2
DC Motor Control with Reversing

Copyright 2004 Silicon Laboratories Inc.

AUTH: KAB
DATE: 12MARO4

This program provides DC motor control with hard reversing using the PCA
8-bit PWM Mode. A single PCA module is used to generate an 8-bit PWM. The
pin skip register XBRO is used to multiplex the PWM between two outputs
PO.0 and PO.1. These two outputs are used to drive the lower transistors in
an H-Bridge configuration. P0O.2 and P0O.3 are used to drive the upper
transistors.

The ADC is used to read the poteniometer voltage on PO.6. The ADC uses polled
mode and 64 sample averaging.

When the pushbutton is pressed and held the PWM duty cycle will be set to
zero and all transistors will be turned off. This will allow the motor to
coast. Releasing the switch will cause the motor to reverse. If the switch
is released before the motor comes to a complete stop, the motor will
abruptly stop and reverse directions.

Target: C8051F30x

Tool chain: KEIL Eval “c”

id SYSCLK_Init (void); // Initialize SYSCLK

id PORT_Init (void); // Initialize XBR and Port Pins
id PCAO_Init (void); // Initialize PCAO

id ADCO_Init (void); // Initialize ADC

signed char readVin(void); // read ADC using polling

unsigned char avgVin(void); // returns avg ADC reading

VO
Vo

//

id coast (void);
id reverse (void);

Global Variables

bit Fwd;

sb

VO

it SW1 = PO"5;

id main (void)

20

Rev. 1.1

SILICON LABS

AN191

//

PCAOMD &= ~0x40;

SYSCLK_Init Q;
PORT_Init Q;
ADCO_Init();
PCAO_Init Q;

Fwd = 1;
EA = 1;
while (1)
{
if(Swl)
{
PCAOCPHO = avgVin(Q);
}
else
{
coast();
while(1SW1);
reverse();
}

// Disable Watchdog Timer

// Initialize system clock

// Initialize crossbar and GPIO
// Initialize ADC for polled mode
// PCAO for 8-bit PWM

// start in forward direction

// enable global interrupts

// if not pressed

// get avg reading and output to PWM

// if pressed, coast
// wait for button to be released
// reverse directions

// This routine initializes the system clock to use the internal 24_5MHz

// oscillator as its clock source. Also enables missing clock detector reset
// and the VDD Monitor.
//
void SYSCLK_Init (void)
{
OSCICN = 0x07; // Configure internal oscillator for
// highest frequency.
RSTSRC = 0x06; // Enable missing clock detector

// and VDD Monitor.
}
/)
// PORT_Init
// -
//
// Configure the Crossbar and GPIO ports.
// PO.0 - /Abot - active low PWM signal drives bottom transistor
// PO.1 - /Bbot - active low PWM signal drives bottom transistor
// PO.2 - /Atop - active low signal drives top transistor
// P0.3 - /Abot - active low signal drives top transistor
// PO.4 -
// PO.5 - Switch
// PO.6 - Vin
// PO.7 -
//
void PORT_Init (void)
{

) Rev. 1.1 21

SILICON LABS

AN191

XBRO = ~0x01;
XBR1 = 0x40;
POMDOUT = OxOF;
POMDIN = ~0x40;
PO = ~0x08;
XBR2 |= 0x40;

3

// PCAO_Init

//

//

void PCAO_Init (void)
{

PCAOMD = 0x02;
PCAOCPMO = 0x42;

PCAOL
PCAOH
PCAOCPLO
PCAOCPHO
CR = 1;

0x00;
0x00;
0x00;
0x00;

void ADCO_Init (void)
{

ADCOCN = 0x40;
AMXOSL = 0Oxf6;
ADCOCF = 0x81;
REFOCN = OxOa;
EIE1 &= ~0x04;
ADOEN = 1;

}

unsigned char readVin(void)
{

ADOINT = 0;

ADOBUSY = 1;

while (TADOINT);

return ADCO;

unsigned char avgVin(void)

{

unsigned char i, result;
unsigned int sum;

//
//
//
//
//
//

//

//

//

//

//

//
//
//
//
//
//
//
//

//
//
//

skip all except P0.0

Enable CEXO on P0O.0O

P0.0 - P0.3 are push-pull outputs
Configure P0.6 for analog input
PO.3 low

Enable crossbar

PCA uses sysclk/4, no interrupt
Module 0, 8-bit PWM Mode

reset the timer

Initialize to minimum duty

Start PCAO timer

Low-power tracking mode;

ADCO conversions are initiated
on writes to ADOBUSY;

select P0.6, single-ended
ADOSC=4 gain =1

ADC uses Vdd for full scale
disable ADCO EOC interrupt
enable ADC

clear ADCO end-of-conversion
initiate conversion
wait for conversion to complete

22

Rev. 1.1

SILICON LABS

AN191

}

sum = 0;
for (i = 64; 1 1= 0; i--)
{

}

result = (unsigned char)(sum>>6);
return result;

sum += readVin();

void coast(void)

{

}

PCAOCPHO = 0;
PO = Oxff;

void reverse (void)

{

Fwd=1Fwd;
CR = 0;
PCAOCPHO = 0;
PCAOCPMO = 0;
PO = Oxff;
XBR2 &= ~0x40;
it (Fwd)
{
XBRO = ~0x01;
PO = ~0x08;
b
else
{
XBRO = ~0x02;
PO = ~0x04;
H

XBR2 |= 0x40;
PCAOCPMO = 0x42;
CR = 1;

//

//

//
//

//
//

//
//
//
//
//
//

//
//

//
//

//
//
//

repeat 64 times
read ADC and add to sum

divide by 64 and cast to uchar
return average reading

disable PWM
force all outputs high

toggle direction flag
Stop PCAO timer

clear duty cycle
disable PWM

force all outputs high
disable Crossbar

don’t skip PO.0
PO.3 low

don’t skip PO.1
PO.2 low

enable Crossbar
Modulle O, 8-bit PWM Mode
restart PCAO timer

SILICON LABS

Rev. 1.1

23

AN191

APPENDIX C—DC MOTOR WITH SOFT REVERSING CODE

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Example 3
DC Motor Control with Soft Reversing

Copyright 2004 Silicon Laboratories Inc.

AUTH: KAB
DATE: 12MARO4

This program provides dc motor control with reversing control using the PCA
8-bit PWM Mode. A single PCA module is used to generate an 8-bit PWM. The
pin skip register XBRO is used to multiplex the PWM between two outputs
PO.0 and PO.1. These two outputs are used to drive the lower transistors in
an H-Bridge configuration. P0O.2 and P0O.3 are used to drive the upper
transistors.

The ADC is used to read the potentiometer voltage on PO.6. The ADC uses
polled mode and 64 sample averaging-

The ADC is also used to sense the motor voltage during reversal. When the
Reverse pushbutton is pressed, the PWM duty will be set to zero. The

// differential voltage across the motor is measured. The once this voltage
// drops below a limit, the upper transistors are reversed and the PWM will be
// applied to the other phase.
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval “c”
//
// -
// Includes
)~
#include <c8051f300.h> // SFR declarations
/) -
// Typdefs
/)
typedef union // union used for writing to TLO & THO
{
struct
{
unsigned char hi;
unsigned char lo;
} b;
unsigned int w;
Judblbyte;

/) —
// MACROS
S~
#define VWINDOW (5*256/100) // set window to +/- 5%
24 Rev. 1.1)

SILICON LABS

AN191

#define DTIME (245000/48)
#define GSAMP 10

void SYSCLK_Init (void);
void PORT_Init (void);

void PCAO_Init (void);

void ADCO_Init (void);

void Timer_Init (void);
unsigned char readVin(void);
unsigned char avgVin(void);
void coast (void);

void detectStop(void);

void reverse (void);

void delay(unsigned int);

// Global Variables
bit Fwd;

sbit SW1 = PON7;

void main (void)

{
PCAOMD &= ~0x40;

SYSCLK_Init O;
PORT_Init Q;
ADCO_Init(Q);
PCAO_Init Q;
Timer_Init();
Fwd = 1;

EA = 1;

while (1)
{
iT(Sw1)
{

PCAOCPHO = avgVin(Q);

}

else

{
coast();
while(1SW1);
detectStop();
reverse();

//
//
//
//

//
/7

//
//

//

//
//
//
//

//

//

//

set delay time to 10 ms per sample
stop for 10 good samples (100ms)

Initialize SYSCLK

Initialize XBR and Port Pins
Initialize PCAO

Initialize ADC

read ADC using polling
returns avg ADC reading

disable PWM and outputs
wait for motor to stop

Disable Watchdog Timer

Initialize system clock
Initialize crossbar and GPIO
Initialize ADC for polled mode
PCAO for 8-bit PWM

enable global interrupts

get avg reading and output to PWM

wait for button

SILICON LABS

Rev. 1.1

25

void SYSCLK Init (void)
{
OSCICN
RSTSRC

0x07; // configure internal oscillator for
0x06; // enable missing clock detector
// and VDD Monitor.

// Configure the Crossbar and GPIO ports.

// PO.0 - /Abot - active low PWM signal drives bottom transistor
// PO.1 - /Bbot - active low PWM signal drives bottom transistor
// PO.2 - /Atop - active low signal drives top transistor
// PO.3 - /Abot - active low signal drives top transistor
// P0O.4 - VA
// PO.5 - VB
// PO.6 - Vin
// PO.7 - Switch
//
void PORT_Init (void)
{
XBRO = 0x70; // skip P0.4, PO.5, & PO.6
XBR1 = 0x40; // Enable CEXO on P0O.0O
POMDOUT = OxOf; // PO.0 - PO.4 are push-pull outputs
POMDIN = ~0x70; // Configure PO.6 for analog input
XBR2 = 0x40; // Enable crossbar
PO = ~0x08; // PO.3 low
}
)~
// PCAO_Init
/)
void PCAO_Init (void)
{
PCAOMD = 0x02; // PCA uses sysclk/4, no interrupt
PCAOCPMO = 0x42; // Module 0, 8-bit PWM Mode
PCAOL = 0x00; // reset the timer
PCAOH = 0x00;
PCAOCPLO = 0x00;
PCAOCPHO = 0x00; // Initialize to minimum duty
CR = 1; // Start PCAO timer
}
S

// ADCO_Init

26 Rev. 1.1

SILICON LABS

AN191

void ADCO_Init (void)
{

ADCOCN = 0x40;

AMXOSL = Oxf6;

ADCOCF = 0x81 ;

REFOCN = 0OxOa;

EIE1 &= ~0x04;

ADOEN = 1;
}
/)
// Timer_Init
[
void Timer_Init (void)
{

CKCON = 0x02;

TMOD = 0x01;
}
/)=
// read_Vin()
/)
unsigned char readVin(void)
{

ADOINT = 0;

ADOBUSY = 1;

while (TADOINT);

return ADCO;
}
// -

void detectStop(void)
{

unsigned char g;

AMXOSL = 0x54;

g = 0;
while (g < GSAMP)
{

ADOINT = O

ADOWINT = O;
ADOBUSY = 1;
while (YADOINT);
iT(ADOWINT)

g++;
else

g=0;
delay(DTIME);

}

AMXOSL = Oxf6;

// Low-power tracking mode;

// ADCO conversions are initiated
// on writes to ADOBUSY;

// select P0.6, single-ended

// ADOSC=4 gain =1

// ADC uses Vdd for full scale
// disable ADCO EOC interrupt

// enable ADC

// TO uses sysclk/48
// TO mode 1, 16-bit counter

// clear ADCO end-of-conversion
// initiate conversion
// wait for conversion to complete

// select PO.4 - PO.5

// wait for GSAMP good samples

// clear ADCO end-of-conversion

// clear window detector

// initiate conversion

// wait for conversion to complete
// count number of good samples
// start over if outside window

// wait 10 ms

// select P0.6, single ended

SILICON LABS

Rev. 1.1 27

AN191

unsigned char avgVin(void)

{
unsigned char i, result;
unsigned iInt sum;
sum = 0;
for (i = 64; 1 1= 0; i--) // repeat 64 times
{
sum += readVin(); // read ADC and add to sum
3
result = (unsigned char)(sum>>6); // divide by 64 and cast to uchar
return result; // return average reading
by
S~
// coast()
[
void coast(void)
{
PCAOCPHO = 0; // disable PWM
PO = OxfT; // force all outputs high
}
/)
// reverse()
/)
void reverse (void)
{
Fwd=1Fwd;
CR = 0; // Stop PCAO timer
PCAOCPHO = O; // clear duty cycle
PCAOCPMO = O; // disable PWM
PO = Oxff; // all high
XBR2 &= ~0x40; // disable Crossbar
if (Fwd)
{
XBRO = ~0x01; // don’t skip PO.0
PO = ~0x08; // PO.3 low
¥
else
{
XBRO = ~0x02; // don’t skip PO.1
PO = ~0x04; // PO.2 low
¥
XBR2 |= 0x40; // enable Crossbar
PCAOCPMO = 0x42; // Module 0, 8-bit PWM Mode
CR = 1; // restart PCAO timer
}
)~
// delay(Q
S~
void delay(unsigned int d)
{
udblbyte t;
TRO = O; // stop TimerO
t.w = -d; // take 2’s complement
TLO = t.b.lo; // write lo byte first
THO = t.b.hi; // write hi byte second
28 Rev. 1.1)

SILICON LABS

AN191

TFO
TRO
whil
TRO

0
1-
1
0

1o 1 n

(ITFO);

// clear overflow flag
// start TimerO

// wait for overflow
// stop timer

SILICON LABS

Rev. 1.1

29

AN191

APPENDIX D—BRUSHLESS DC MOTOR CODE

// Example 4
// BLDC Motor Control

/)=
// Copyright 2004 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 12MARO4

//

// This program provides Brushless DC motor control using the PCA 8-bit PWM
// Mode. A single PCA module is used to generate an 8-bit PWM. The pin skip
// register XBRO is used to multiplex the PWM between three outputs P1.0,

// P1.1, & P1.2 These three outputs are used to drive the lower transistors in
// an 3-Phase Bridge configuration. P0.4, P0O.5, & PO.6 are used to drive the
// upper transistors.

//

// The ADC is used to read the potentiometer voltage on PO.6. The ADC uses
// polled mode and 64 sample averaging.

//

// PO.0, PO.1, and PO.2 are used for hall effect sensor inputs. This pins are
// polled to determine the rotor position. The readHalls() function requires
// three identical samples and returns the hall code. The corresponding state
// of the motor is found from the HallPattern. This state is then used to

// commutate the motor.

//

// It is safe to single-step and use breakpoints ONLY with the motor wires
// disconnected. Do not single step through the code with the motor wires

// connected! The PWM outputs may remain active while the CPU is stopped.

// In particular do not single step past the lines that enable the PWM.

// These lines are marked with comments in ALL CAPS.

//

// Target: C8051F33x

//

// Tool chain: KEIL Eval “c”

//
/)
// Includes

const unsigned char code hallPattern[7]=
{ 0x00, 0x01, 0x03, 0x02, 0x06, 0x04, Ox05};

const unsigned char code skipPattern[7]=
{~0x01,~0x01,~0x01,~0x02,~0x02,~0x04 ,~0x04} ;

30 Rev. 1.1

SILICON LABS

AN191

const unsigned char code PlPattern[7]=
{~0x00,~0x20,~0x40,~0x40,~0x10,~0x10,~0x20};

void SYSCLK_Init (void);

void PORT_Init (void);

void PCAO_Init (void);

void PCAO_ISR (void);

void ADC_Init (void);

unsigned char readVin(void);
unsigned char avgVin(void);
unsigned char readHalls(void);
unsigned char hallPosition(void);
void commutate(unsigned char);
void coast(void);

void main (void) {

unsigned char h,p;

bit start;
PCAOMD &= ~0x40; // Disable Watchdog Timer
SYSCLK_Init); // initialize system clock
PORT_Init ; // initialize i/0
PCAO_Init O; // configure PCAO to 8-bit PWM
ADC_InitQ; // initialize i/0
EA = 1; // enable global interrupts
p = 0; // clear p
start = 1; // set start bit
while (1)
{
h = hallPosition(); // h equals hall position
if(h) // if good position
{
it ((h = p)]|(start)) // if new position or start
p = h; // update p
// DO NOT SINGLE-STEP PAST THE NEXT
// LINE WITH MOTOR WIRES CONNECTED!!!
commutate(p); // commutate motor, enables PWM
start = 0;
3
PCAOCPHO = avgVin(Q); // get avg reading and output to PWM
}
else
{

Rev. 1.1

SILICON LABS

31

AN191

coast(); // coast until good reading
start = 1; // set start bit to restart motor

3
}
S~
// SYSCLK_Init
[
void SYSCLK_Init (void)
{

OSCICN = 0x83; // configure for 24.5 MHz
}
/)
// PORT_Init
/)
//
// Configure the Crossbar and GPIO ports.
// PO.0 - HA
// PO.1 - HB
// P0.2 - HC
// PO.3 -
// PO.4 -
// PO.5 -
// PO.6 -
// PO.7 - Vin - analog input
//
// P1.0 - Abottom - push-pull output
// P1.1 - Bbot - push-pull output
// P1.2 - Cbot - push-pull output
// P1.3 -
// P1.4 - Atop - push-pull output
// P1.5 - Btop - push-pull output
// P1.6 - Ctop - push-pull output
// P1.7 -
//
void PORT_Init (void)
{

XBRO = 0x00; // enable nothing on XBRO

XBR1 = 0x01; // enable PCA CEXO

POSKIP = OxFF; // skip all pins on PO

POMDIN =~0x80; // PO.7 analog input

P1SKIP =~0x01; // skip all except P1.0

PIMDOUT = Ox77; // enable Pl outputs

XBR1 |= 0x40; // enable crossbar

P1 = OxFf; // P1 all high
}
[~
// PCAO_Init
/)
void PCAO_Init (void)
{

PCAOMD = 0x02; // PCA uses sysclk/4, no CF int
32 Rev. 1.1)

SILICON LABS

AN191

PCAOCPMO = 0x00; // clear mode, pin high

PCAOL = 0x00; // reset the timer

PCAOH = 0x00;

PCAOCPHO = 0x00; // initial to 0%

CR = 1; // START PCAO timer
by
[/ -
// coast function
// -
void coast(void)
{

PCAOCPMO = 0x00; // disable PWM

P1 = Oxff; // disable upper transistors
b
[/ —————————————
// readHalls function
[/

// reads and debounces Hall-Sensor inputs

unsigned char readHalls(void)

{
unsigned char g,h,i;
g = 0;
h = 0;
while (g<GSAMP) // while less that 3 good samples
{
i = PO & Ox07; // read halls
if (h == 1) // if the same
g++; // one more good
else
g = 0; // else start over
h =1; // update h
3
return h; // return good hall code
}
[
// hallPosition function
/)
unsigned char hallPosition (void)
{
unsigned char h,p;
h = readHalls(Q); // get debounced hall reading
// find corresponding pattern index
for (p=6;(h = hallPattern[p])&&(p!=0);p--);
return p;
}
/)
// hallPosition function
/)

void commutate (unsigned char i)

{

Rev. 1.1 33

SILICON LABS

AN191

PCAOCPMO = 0x00;

P1 = OxFF;

XBR1 &= ~0x40;

P1SKIP = skipPattern[i];
P1 = PlPattern[i];

XBR1 |= 0x40;

PCAOCPMO = 0x42;

//

//

//
//
//
//

disable PWM

disable crossbar

enable crossbar

DO NOT SINGLE-STEP PAST THE NEXT
LINE WITH MOTOR WIRES CONNECTEDI!!
enable 8-bit PWM mode

}
Y et e e T e e e
// ADC functions
Y et et et T e e
void ADC_Init(void)
{
AMXOP = 0x07; // positive input PO.7
AMXON = 0x11; // single ended mode
ADCOCF = OxC4; // 1MHz clock, left justified
ADCOCN = 0x80; // configure ADC for polled mode
REFOCN = 0x08; // use Vdd as ADC full scale
}
unsigned char readVin(void)
{
ADOINT = O0; // clear ADCO end-of-conversion
ADOBUSY = 1; // initiate conversion
while (TADOINT); // wait for conversion to complete
return ADCOH;
}
unsigned char avgVin(void)
{
unsigned char i, result;
unsigned int sum;
sum = 0;
for (i =64; i 1=0; i--) // repeat 64 times
{
sum += readVin(); // read ADC and add to sum
¥
result = (unsigned char)(sum>>6); // divide by 64 and cast to uchar
return result; // return average reading
}
34 Rev. 1.1)

SILICON LABS

AN191

APPENDIX E—AC INDUCTION MOTOR CODE

Example 5
AC Motor Control

Copyright 2004 Silicon Laboratories Inc.

AUTH: KAB
DATE: 12MARO4

This program provides AC Induction motor control using the PCA 8-bit
PWM mode. Three PCA channels are used to generate three-phase PWM.

The three PWMs are output on P0.0-0.2. The falling edge of the three
PWM signals are edge-aligned. Each PWM has a frequency of 24 kHz and

// a low-time that varies independently from 160ns to 100%. These

// signals can be used to drive a induction motor using a three-phase
// bridge. A gate drive with built in dead-time is required.

//

// A potentiometer is connected to PO.6. The value of the Pot controls
// the speed of the motor. The speed is controlled using a constant V/
// Hz profile. The sine wave frequency varies from DC up to 60 Hz. The
// modulation depth varies from zero to 100%.

//

// Target: C8051F33x

//

// Tool chain: KEIL Eval “c”

typedef union
{
struct
{
unsigned char hi;
unsigned char lo;
} b;
unsigned int w;
Judblbyte;

void SYSCLK_Init (void);
void PORT_Init (void);
void PCAO_Init (void);

// delay time 1 ms update rate
// 24500000/4/1024

// union used for writing to TLO & THO

SILICON LABS

Rev. 1.1

35

AN191

void ADCO_Init (void);

void Timer_Init(void);

unsigned char readVin(void);

unsigned char avgVin(void);

unsigned char sineWave(unsigned char);
void Timer_ISR (void);

void Update(void);

const signed char code sine[256]=
{
0x00,
0x25,
0x47,
0x62,
0Xx76,
OX7E,
0x7C,
0x70,
0x59,
0x3B,
0x17,
OxF2,
OxCE,
OXAE,
0x95,
0x86,
0x81,
0x87,
0x98,
0xB2,
0xD2,
OxF7,

0x03,
0x28,
0x49,
0x64,
ox77,
OX7F,
0x7C,
Ox6E,
0x57,
0x38,
0x14,
OXEF,
OxCB,
OxAC,
0x94,
0x85,
0x81,
0x88,
Ox9A,
0xB4,
0OxD5,
OxFA,

0x06,
0x2B,
0x4cC,
0x66,
0x78,
Ox7F,
0x7B,
0x6C,
0x54,
0x35,
0x11,
OXEC,
0xC8,
0xA9,
0x92,
0x84,
0x81,
0x89,
0x9cC,
0xB7,
0xD8,
OXFD,

0x09,
Ox2E,
Ox4E,
0x68,
0x79,
Ox7F,
OX7A,
0x6B,
0x52,
0x32,
OxOE,
OxE9,
0xC5,
OxA7,
0x90,
0x84,
0x82,
Ox8A,
Ox9E,
0xB9,
0OxDB,
0x00

0x0cC,
0x31,
0x51,
Ox6A,
OX7A,
OX7F,
0x79,
0x69,
0x50,
Ox2F,
0xO0B,
OXE6,
0xC3,
OxA5,
Ox8F,
0x83,
0x82,
0x8C,
OxAO,
OxBC,
OxDE,

0x10,
0x34,
0x53,
0x6C,
0x7B,
OX7F,
0x78,
0x67,
0x4D,
0x2C,
0x08,
OXE3,
0xCO,
OxA3,
Ox8E,
0x83,
0x82,
0x8D,
OxA2,
OxBE,
OxE1,

// Global Variables
unsigned char Volts;

unsigned int Sum;

void main (void)

0x13,
0x36,
0x56,
0x6D,
0x7B,
OX7F,
0x77,
0x65,
0x4B,
0x29,
0x05,
OxEO,
OxBD,
OxA1l,
0x8cC,
0x82,
0x83,
0Ox8E,
OxA4,
0OxC1,
OxE4,

0x16,
0x39,
0x58,
Ox6F,
0x7C,
Ox7F,
0x76,
0x63,
0x48,
0x27,
0x02,
0OxDC,
0xBB,
Ox9F,
0x8B,
0x82,
0x83,
0x90,
OxAG,
0xC4,
OxE7,

0x19,
0x3C,
Ox5A,
0x70,
0x7D,
OX7E,
0x75,
0x61,
0x45,
0x24,
OXFE,
0xD9,
0xB8,
0x9D,
Ox8A,
0x81,
0x84,
0x91,
OxA8,
0xC7,
OxEA,

0ox1C,
Ox3F,
0x5C,
0x72,
0x7D,
OX7E,
0x74,
Ox5F,
0x43,
0x20,
OxFB,
oxD7,
0xB5,
0x9B,
0x89,
0x81,
0x85,
0x93,
OxAA,
OxCA,
OxED,

Ox1F,
0x42,
Ox5E,
0x73,
OX7E,
0x7D,
0x72,
0x5D,
0x40,
0x1D,
OxF8,
0xD4,
0xB3,
0x99,
0x88,
0x81,
0x85,
0x94,
OxAD,
OxCC,
OxFO,

0x22,
0x44,
0x60,
0x74,
OX7E,
Ox7D,
0x71,
0x5B,
0x3D,
Ox1A,
OxF5,
0oxD1,
0xBO,
0x97,
0x87,
0x81,
0x86,
0x96,
OXAF,
OxCF,
OxF4,

// output voltage

// integral of omega

{
PCAOMD &= ~0x40; // disable watchdog timer
SYSCLK_Init ; // initialize system clock
PCAO_Init Q; // initialize PCAO for 8-bit PWM
PORT_Init Q; // initialize crossbar and GPIO
ADCO_Init(Q); // initialize ADC for polled mode
Timer_Init(); // initialize TO for update timebase
36 Rev. 1.1)

SILICON LABS

AN191

EA = 1;

Sum

0;

while (1)

{

Volts = avgVin(Q);

}
}

void SYSCLK_Init (void)

{

OSCICN
RSTSRC

0x07;
0x06;

//

//

/7

//
//
//

// Configure the Crossbar and GPIO ports.
- IPWMA - phase A PWM signal - push-pull output
IPWMB - phase B PWM signal - push-pull output
TPWMC - phase C PWM signal - push-pull output

// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.

~N~No ohWNEO

Analog Input

void PORT_Init (void)

{
XBRO

XBR1

POMDOUT

POMDIN

XBR2

0x00;
0xc0;
0x07;
~0x40;
0x40;

void PCAO_Init (void)

{

PCAOMD

PCAOL

PCAOH

//Module
PCAOCPMO

0x02;
0x00;
0x00;

o

= 0x42;

//
//
//
//
//

//
//
//

//

enable global interrupts

clear 16-bit integral of omega

set output voltage to pot setting

configure for 24.5 MHz
enable missing clock detector
and VDD Monitor.

skip nothing

enable CEX0-2

P0.0-2 push-pull output
P0.6 analog input
enable crossbar

use SYSCLK/4 for 24kHz PWM
clear PCA Counter/Timer Low Byte
clear PCA Counter/Timer High Byte

module O 8-bit PWM no interrupts

SILICON LABS

Rev. 1.1

37

AN191

PCAOCPLO = 0x80;
PCAOCPHO = 0x80;
//Nodule 1
PCAOCPM1 = 0x42;
PCAOCPL1 = 0x80;
PCAOCPH1 = 0x80;
//Module 2
PCAOCPM2 = 0x42;
PCAOCPL2 = 0x80;
PCAOCPH2 = 0x80;
PCAOCN = 0x40;
}
// Timer_Init
void Timer_Init (void)
{
CKCON = 0x01;
TMOD = 0x01;
TRO = 1;
ETO = 1;
TFO = 1;
}

void Timer_ISR(void) interrupt 1

{
udblbyte t;

//
//

//
//
//

//
//
//

//

//
//
//
//

ize for 50%
ize for 50%

module 1 8-bit PWM no interrupts
initialize for 50%
initialize for 50%

modulle 2 8-bit PWM no interrupts
initialize for 50%
initialize for 50%

enable PCAO

TO uses sysclk/4
TO mode 1

enable timer
enable interrupts

//force interrupt

TRO = 0; // stop TimerO
t.w = -DTIME; // 2s complement delay-time
TLO = t.b.lo; // write lo byte first
THO = t.b.hi; // write hi byte second
TFO = O; // clear overflow flag
TRO = 1; // start TimerO
Update(Q); // update sinewave
}
/)~
// Update function
S~
void Update (void)
{
unsigned int omega; // angular frequency
unsigned char theta; // sine wave angle
omega = Volts; // constant V/Hz control
38 Rev. 1.1)

SILICON LABS

AN191

omega <<=4; //

Sum += omega; //

theta = Sum >>8; //

PCAOCPHO = sineWave(theta); //

PCAOCPH1 = sineWave(theta + 0x55);

PCAOCPH2 = sineWave(theta + Oxaa);
}

unsigned char sineWave(unsigned char q)

{

signed char s; //
unsigned char o; //
unsigned int p; //
s = sine[q]; //
p = Volts * (signed int)s; //
0 = p>>8; //
o += 0x80; //
return o; //
}

void ADCO_Init (void)

ADCOCN = 0x40; //
//
//
AMXOSL = Oxf6; //
ADCOCF = 0x81 ; //
REFOCN = 0OxOa; //
EIE1 &= ~0x04; //
ADOEN = 1; //
T
unsigned char readVin(void)
{
ADOINT = 0; //
ADOBUSY = 1; //
while (TADOINT); //
return ADCO;
3

unsigned char avgVin(void)

scale omega for 1 ms update rate
integrate omega
theta is upper byte

output sinewaves

signed sine
output value
16 bit product

get value from table
multiply by v

throw away low byte
center sinewave at 50%

return sinewave value

Low-power tracking mode;

ADCO conversions are initiated
on writes to ADOBUSY;

select P0.6, single-ended
ADOSC=4 gain =1

ADC uses Vdd for full scale
disable ADCO EOC interrupt
enable ADC

clear ADCO end-of-conversion
initiate conversion
wait for conversion to complete

SILICON LABS

Rev. 1.1

39

AN191

{
unsigned char i, result;
unsigned iInt sum;
sum = 0O;
for (i =64; 1 1= 0; i--) // repeat 64 times
{
sum += readVin(); // read ADC and add to sum
¥
result = (unsigned char)(sum>>6); // divide by 64 and cast to uchar
return result; // return average reading
}
40 Rev. 1.1)

SILICON LABS

AN191

APPENDIX F—PWM USING HIGH-SPEED OUTPUT MODE CODE

// Example 6

// PWM using PCA High Speed Output Mode

)

// Copyright 2004 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 12MARO4
//

// This example demonstrates using the High Speed Output (HSO) mode to

// generate a PWM signal.

//

// The program reads the value of a
// this value to set the duty Cycle
// to drive a dc motor.

//

// Target: C8051F30x

//

// Tool chain: KEIL Eval “c’

//

)

// Includes

typedef union
{
struct
{
unsigned char hi;
unsigned char lo;
} b;
unsigned iInt w;
Judblbyte;

#define SYSCLK 24500000
#define PERIOD (SYSCLK/20000)
#define DEADTIME 25

#define LATENCY 45

#define HTSPAN (PERIOD - 2*LATENCY)

// Global Variables

unsigned int HiTime;
unsigned int NextEdge;

potentiometer connected to P0.6 and uses
of the PWM. This example could be used

// union used for writing to TLO & THO

// SYSCLK frequency in Hz

// desired Dead-Time in clocks
// worst case latency in clocks
// high-time span

SILICON LABS

Rev. 1.1 41

AN191

bit Cycle;

void SYSCLK_Init (void);

void PORT_Init (void);

void PCAO_Init (void);

void PCAO_ISR (void);

void ADCO_Init (void);
unsigned char readVin (void);
unsigned char avgVin (void);

void main (void) {

unsigned long X;
unsigned int y;

PCAOMD &= ~Ox40; //
SYSCLK_Init Q; //
1/

PORT_Init Q; //
PCAO_Init ;
ADCO_Init(Q);

EA = 1; //
while (1)
{
x = avgVinQ); //
X *= HTSPAN; //
y = x>>8; //
y += LATENCY; //
EIE1 &= ~0x08; //
HiTime = y; //
EIE1 |= 0x08; //
}
}
// SYSCLK_Init
void SYSCLK_ Init (void)
{
OSCICN = 0x07; //
RSTSRC = 0x04; //
}
// PORT_Init
//

// Configure the Crossbar and GPIO ports.

Disable Watchdog Timer

Initialize system clock to
24 .5MHz internal oscillator
Initialize crossbar and GPIO

enable global interrupts

get avg. ADC reading

multiply by span

through away low byte

add minimum latency

disable PCA interrupt

coherent update of global hitime
enable PCA interrupt

configure for 24.5 MHz
enable missing clock detector

42

Rev. 1.1

SILICON LABS

AN191

// PO.0 - PWM - CEXO - push-pull output
// PO.1 -
// PO.2 -
// PO.3 -
// PO.4 -
// PO.5 -
// PO.6 - Analog Input
// PO.7 -
//
void PORT_Init (void)
{
XBRO = 0x00; // skip nothing
XBR1 = 0x40; // Enable CEXO on PO.O
POMDOUT = 0x01; // enable CEXO as a push-pull output
POMDIN = ~0x40; // enable ADC input on PO.6
XBR2 |= 0x40; // enable crossbar
}
/[-
// PCAO_Init
/Yy -
void PCAO_Init (void)
{
udblbyte output;
PCAOMD = 0x08; // PCA uses sysclk, no CF int
PCAOCPMO = 0x4D; // High Speed Output Mode, enable ECCFO
PCAOL = 0x00; // reset the timer
PCAOH = 0x00;
output.w = PERIOD/2; // schedule first interrupt
PCAOCPLO = output.b.lo;
PCAOCPHO = output.b.hi;
NextEdge = PERIOD; // initialize NextEdge
EIE1 |= 0x08; // enable PCAO interrupts
EIP1 |= 0x08; // set PCA to high priority
CR = 1; // start PCAO timer
}
/-
// PCAO_ISR
/)
void PCAO_ISR (void) interrupt 9 using 1
{
static bit cycle = 0;
udblbyte output;
output.w = NextEdge;
PCAOCPLO = output.b.lo; // write lo byte first
PCAOCPHO = output.b.hi; // write hi byte second
PCAOCN &= ~0x87; // clear all PCA flags
if (cycle)
{
NextEdge += PERIOD;
NextEdge -= HiTime;
}
else
) Rev. 1.1 43
SILICON LABS

AN191

{
NextEdge += HiTime;
b
cycle = !Icycle;
T

void ADCO_Init (void)
{

ADCOCN = 0x00;
AMXOSL = Oxf6;
ADCOCF = 0x81 ;
REFOCN = 0OxOa;
EIE1 &= ~0x04;
ADOEN = 1;

T

unsigned char readVin(void)

{
ADOINT = 0;
ADOBUSY = 1;
while (TADOINT);
return ADCO;

3

unsigned char avgVin(void)

{

unsigned char i, result;

unsigned int sum;

sum = 0;
for (i = 64; 1 1= 0; i--)
{
sum += readVin();
ks

result = (unsigned char)(sum>>6);

return result;

//
//
//
//
//
//
//
//

//
//
//

//

//

//
//

normal tracking mode;

ADCO conversions are initiated
on writes to ADOBUSY;

select P0.6

ADOSC=4 gain =1

ADC uses Vdd for full scale
disable ADCO EOC interrupt
enable ADC

clear ADCO end-of-conversion
initiate conversion
wait for conversion to complete

repeat 64 times
read ADC and add to sum

divide by 64 and cast to uchar
return average reading

44

Rev. 1.1

SILICON LABS

AN191

APPENDIX G—CENTER ALIGNED PWM CODE

// Example 7

// Center-Aligned PWM with Dead-Time

/)~
// Copyright 2004 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 12MARO4
//

// This program reads the voltage at P0.6 and outputs center-aligned PWM

// with dead-time on PO.1 and P0O.2.
//

// Target: C8051F30x

//

// Tool chain: KEIL Eval “c’

//

) R .,

// Includes
#include <c8051f300.h>

typedef union

{
struct
{
unsigned char hi;
unsigned char lo;
} b;
unsigned iInt w;
Judblbyte;
// Macros
#define SYSCLK 24500000

#define PERIOD (SYSCLK/20000/2)
#define DEADTIME 25

#define LATENCY 45

#define HTSPAN (PERIOD - 2*LATENCY)

// Global Variables

unsigned int HiTime;

unsigned int nextEdgeO;
unsigned int nextEdgel;
unsigned int nextEdge2;

void SYSCLK_Init (void);

//

//

//
//
//
//

sfr declarations

union used for writing to PCAOCPxx

SYSCLK frequency in Hz

desired dead-time in clocks
worst case latency in clocks
high-time span

global PWM high-time
CEXO next edge time
CEX1 next edge time
CEX2 next edge time

SILICON LABS

Rev. 1.1 45

AN191

void PORT_Init (void);

void PCAO_Init (void);

void PCAO_ISR (void);

void ADCO_Init (void);
unsigned char readVin(void);
unsigned char avgVin(void);

void main (void)

{

unsigned long Xx;
unsigned int y;

PCAOMD &= ~0x40;

SYSCLK_Init);
// 24_5MHz internal oscillator
PORT_Init Q;
PCAO_Init Q;
ADCO_Init();

EA = 1;

while (1)
{

x = avgVin(Q);
X *= HTSPAN;
y = x>>8;

y += LATENCY;

// Disable Watchdog Timer

// Initialize system clock to

// Initialize crossbar and GPIO

//

//
//
//
//

enable global interrupts

get avg. ADC reading
multiply by span
through away low byte
add minimum latency

EIE1 &= ~0x08; // disable interrupt while updating
HiTime = vy; // coherent update of global hitime
EIE1 |= 0x08; // re-enable interrupt
}
}
/)
// SYSCLK_Init
/e
void SYSCLK_Init (void)
{
OSCICN = 0x07; // 24_.5MHz internal oscillator
RSTSRC = 0x04; // enable missing clock detector
}
S~
// PORT Init
/)
//
// Configure the Crossbar and GPIO ports.
// PO.0 - CEXO
// PO.1 - CEX1
// PO.2 - CEX2
46 Rev. 1.1)

SILICON LABS

AN191

//
//
//
//
//
//

PO.4 -

PO.6
PO.7 -

c2

void PORT_Init

{
XBRO

XBR1
POMDOUT |
POMDIN
XBR2

D

Analog Input

(void)

0x00;
0xCO;
0x07;
~0x40;
0x40;

void PCAO_Init (void)

{
udblbyte

PCAOMD
PCAOCN

//Module
PCAOCPMO
output.w
PCAOCPLO
PCAOCPHO

//Module
PCAOCPM1
output.w
PCAOCPL1
PCAOCPH1

//Module
PCAOCPM2
output.w
PCAOCPL2
PCAOCPH2

output;

0x08;
0x00;

i nino

i nneE

o mnmnmnN

0x4D;
PERIOD;
output.b.lo;
output._b.hi;

0x4C;
(PERIOD/2+DEADTIME) ;
output.b.lo;
output._b.hi;

0x4C;

(2*PERIOD) ;
output.b.lo;
output.b.hi;

HiTime = PERIOD/2;

nextEdge0
nextEdgel
nextEdge2

PCAOL
PCAOH

(2*PERIOD);
(3*PERI0D/2-DEADTIME) ;
(3*PERI0D/2+DEADTIME) ;

0x00;
0x00;

EIP1 |= Ox08;
EIE1 |= 0x08;

//
//
//
//
//

//

//
//

//
//
//

//
//
//
//

//
//
//
//

//
//
//
//

//
//

//
//

//

skip nothing

Enable CEX0-2 on P0.0-2

enable CEX0-2 as a push-pull output
configure P0O.6 for analog input
Enable crossbar

used to write to PCAOCPxx

use system clock
clear PCA control register

HSO mode, enable interrupts
schedule first low-high transition
for one full period

HSO mode, disable interrupts
schedule first low-high transition
before CEXO sets polarity to

low on CEXO H-L transition

HSO mode, disable interrupts
schedule first low-high transition
after CEXO sets polarity to

high on CEXO H-L transition

init HighTime to 50%
init next CEXO to 50

init next CEX1 and subtract DT
nit next CEX1 and add DT

clear PCA Low Byte
clear PCA High Byte

set PCA to high priority
Enable PCAO, interrupts

start PCAO timer

SILICON LABS

Rev. 1.1

a7

void PCAO_ISR (void) interrupt 9 using 1

{
static bit cycle = 0;

udblbyte output;
unsigned iInt t ;

output.w
PCAOCPL1
PCAOCPH1
output.w
PCAOCPL2
PCAOCPH2
output.w

nextEdgel;
output.b.lo;
output.b.hi;
nextEdge2;
output.b.lo;
output._b.hi;
nextEdgeO;
PCAOCPLO output.b.lo;
PCAOCPHO = output.b.hi;
PCAOCN &= ~0x87;

cycle = Icycle;
if (cycle)
{
nextEdgeO += PERIOD;

t = nextEdgeO - HiTime;
t + (LATENCY/2
t + (LATENCY/2

nextEdgel
nextEdge?2

}

else

{

t = nextEdgeO + HiTime;
nextEdgel = t + (LATENCY/2
nextEdge2 = t + (LATENCY/2

nextEdge0 += PERIOD;

void ADCO_Init (void)
{

ADCOCN = 0x00;
AMXOSL = Oxf6;
ADCOCF = 0x81 ;
REFOCN = OxOa;
EIE1 &= ~0x04;
ADOEN = 1;

}

unsigned char readVin(void)
{

ADOINT = O;

ADOBUSY = 1;

/7

//

//

//

//

//
//

output next edge on CEX1

output next edge on CEX2

output next edge on CEXO

clear all PCA flags

toggle Cycle

pre-increment nextEdgeO
calculate next edges

DEADTIME) ;
DEADTIME);

//

calculate next edges

DEADTIME) ;
DEADTIME) ;

//

//
//
//
//
//
//

//
//

post increment nextEdgeO

use polled mode

select P0.6, single ended
ADOSC=4, gain =1

ADC uses Vdd for full scale
disable ADCO EOC interrupt
enable ADC

clear ADCO end-of-conversion
initiate conversion

48

Rev. 1.1

SILICON LABS

AN191

}

while (TADOINT);
return ADCO;

unsigned char avgVin(void)

{

unsigned char i, result;
unsigned int sum;

sum = 0;
for (i = 64; i1 1=0; i--)
{

}

result = (unsigned char)(sum>>6);
return result;

sum += readVin(Q);

//
//

//

//

//
//

wait for conversion to complete
return reading

repeat 64 times
read ADC and add to sum

divide by 64 and cast to uchar
return average reading

SILICON LABS

Rev. 1.1

49

AN191

APPENDIX H—QUADRATURE DECODE CODE

// Example 8
// Quadrature Decode

/)=
// Copyright 2004 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 12MARO4

//

// This example provides a quadrature decode interface using the

// external interrupts INTO and INT1. The external interrupts are
// assigned to PO.0 and PO.1.

//

// The interrupt service routines first complement the appropriate
// interrupt polarity bit and then increment or decrement the global
// variable Position as needed. A nested if.._else statement is used
// to determine the appropriate action depending on the status of
// the polarity bits.

//

// The Position variable is output on the UART each time the Position
// changes. The Position can be monitored using a standard Terminal
// application such as Hyperterm. The Terminal should be configured
// for 9600 bps.

//

// Target: C8051F30x

//

// Tool chain: KEIL Eval “c”

//

[/
// Includes

[/ ——————
#include <c8051f300.h> // sfr declarations

#include <stdio.h> // printfQ)

[/ ————————————
// Macros

[/ ——————
#define SYSCLK 24500000 // sysclk frequency in Hz

#define BAUDRATE 9600 // baud rate of UART in bps
/)~
// Function PROTOTYPES
[/~

void main (void);

void SYSCLK_Init (void);
void PORT_Init (void);
void UARTO_Init (void);
void EINT_Init (void);
void INTO_ISR (void);
void INT1_ISR (void);

50 Rev. 1.1

SILICON LABS

AN191

// Global VARIABLES

S
unsigned int Position; // position of quadrature encoder
shit CHA = P0O™O; // quadrature channel A pin state
sbit CHB = POM; // quadrature channel B pin state
/)
// MAIN Routine
/)~
void main (void)
{
unsigned int p; // last position
PCAOMD = 0x00; // disable watchdog timer
PORT_Init Q; // initialize GPI0 and Crossbar
SYSCLK_Init ; // initialize System Clock
EINT_InitQ; // initialize External Interrupt
UARTO_Init Q; // initialize UART
Position = 0; // clear initial position
EA = 1; // enable global interrupts
while (1)
while(p == Position); // do nothing until moved
p = Position; // update p
printf(““%u \r”’, p); // display position
¥
}
/)
// Initialization Subroutines
/)
[
// SYSCLK_Init
/)
void SYSCLK_Init (void)
{
OSCICN = 0x07; // configure for 24.5 MHz
RSTSRC = 0x04; // enable missing clock detector
}
Yt et et L e
// PORT_Init
S~
//
// Configure the Crossbar and GPIO ports.
// PO.0 - INTO - CHA input
// PO.1 - INT1 - CHB input
// PO.2 -
// PO.3 -
// PO_.4 - UART TX - push-pull output
) Rev. 1.1 51

SILICON LABS

AN191

// PO.5 - UART RX

// PO.6 -
// PO.7 - C2D
//
void PORT_Init (void)
{
XBRO = 0x03; // skip PO.0 & PO.1
XBR1 = 0x03; // enable uart
POMDOUT = 0x10; // TX output
XBR2 |= 0x40; // enable crossbars
}
S~
// EINT_Init
[
void EINT_Init (void)
{
ITOICF = 0x10; // INTO=P0O.0, INT1=PO.1
iT(CHA==0) // check CHA state
ITO1CF|=0x08; // it low, trigger high
if(CHB==0) // check CHB state
I1TO1CF|=0x80; // if low, trigger high
TCON |= O0x05; // set ITO & IT1 for edge trigger
TCON &= ~0x0a; // clear 1EO and 1E1 flags
1P |= Ox05; // INTO and INT1 high priority
1E |= O0x05; // Enable INTO and INT1
3
// -
// INTO_ISR, INT1_ISR
/e
//

// These two interrupt service routines occur when the respective encoder
// channel changes state. The interrupt service routines are identical

// except for the respective change in the interrupt flag, polarity bit, and
// count direction. The nested if.._else statement performs the logical

// equivalent of an exclusive OR function using the polarity bits as the

// quadrature state.

//

void INTO_ISR (void) interrupt O

{

ITO1CF ~= 0x08; // toggle edge select trigger

if ((1TO1CF&Ox08)==0x08)
i F((1TO1CF&0Xx80)==0x80)

Position--; // if both decrement
else
Position++; // if different increment
else
iF((1TO1CF&0x80)==0x80)
Position++; // if different increment
else
Position--; // if neither decrement
3
52 Rev. 1.1)

SILICON LABS

AN191

void INT1_ISR (void) interrupt 2
{

ITO1CF ~= 0x80;

ifT ((ITO1CF&0x08)==0x08)
iF((ITO1CF&0x80)==0x80)
Position++;
else
Position--;
else
iF((1TO1CF&0x80)==0x80)
Position--;
else
Position++;

//

//

/7

//

//

//

toggle edge select trigger

if both increment

if different decrement

if different decrement

if neither increment

// Standard UARTO Init from software examples

//
void UARTO_Init (void)

{
SCONO = 0x10;

if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = -(SYSCLK/BAUDRATE/2);
CKCON |= 0x10;

} else if (SYSCLK/BAUDRATE/2/256 < 4) {

TH1 = -(SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13;
CKCON |= 0x01;

//
//
//
//
//

//

//

SCONO: 8-bit variable bit rate
level of STOP bit is ignored

} else if (SYSCLK/BAUDRATE/2/256 < 12) {

TH1 = -(SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13;

} else {
TH1 = -(SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x13;
CKCON |= 0x02;

}

TL1 = TH1;
TMOD &= ~O0xfO0;
TMOD |= 0x20;
TR1 1;

TIO 1;

//

//

//
//

//
//

RX enabled
ninth bits are zeros
clear RIO and TI0 bits
TIM = 1; SCA1:0 = xX
TiIM = 0; SCA1l:0 = 01
TiM = 0; SCA1:0 = 00
TIM = 0; SCA1l:0 = 10
init Timerl

TMOD: timer 1 in 8-bit auto-reload

START Timerl
Indicate TXO ready

SILICON LABS

Rev. 1.1 53

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

loT Portfolio SW/HW Quality Support and Community
www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

®

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS http://www.silabs.com

	1. Introduction
	2. Example 1—DC Motor
	3. Example 2—DC Motor with Reversing
	4. Example 3—DC Motor with Soft Reversing
	5. Example 4—Brushless DC Motor
	6. Example 5—AC Induction Motor
	7. Example 6—PWM using High- Speed Output Mode
	8. Example 7—Center-aligned PWM
	9. Example 8—Quadrature Decode
	Appendix A—DC Motor Code
	Appendix B—DC Motor with Reversing Code
	Appendix C—DC Motor with Soft Reversing Code
	Appendix D—Brushless DC Motor Code
	Appendix E—AC Induction Motor Code
	Appendix F—PWM using High-Speed Output Mode Code
	Appendix G—Center Aligned PWM Code
	Appendix H—Quadrature Decode Code

